Some experiments on independent component analysis of non-Gaussian processes
نویسندگان
چکیده
This paper reports on numerical experiments on the ‘independent component analysis’ (ICA) of some nonGaussian stochastic processes. It is found that the orthonormal basis discovered by ICA are strikingly close to wavelet basis.
منابع مشابه
Speech enhancement based on hidden Markov model using sparse code shrinkage
This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...
متن کاملConditional Dependence in Longitudinal Data Analysis
Mixed models are widely used to analyze longitudinal data. In their conventional formulation as linear mixed models (LMMs) and generalized LMMs (GLMMs), a commonly indispensable assumption in settings involving longitudinal non-Gaussian data is that the longitudinal observations from subjects are conditionally independent, given subject-specific random effects. Although conventional Gaussian...
متن کاملComplete convergence of moving-average processes under negative dependence sub-Gaussian assumptions
The complete convergence is investigated for moving-average processes of doubly infinite sequence of negative dependence sub-gaussian random variables with zero means, finite variances and absolutely summable coefficients. As a corollary, the rate of complete convergence is obtained under some suitable conditions on the coefficients.
متن کاملFault detection and diagnosis of non-linear non-Gaussian dynamic processes using kernel dynamic independent component analysis
Article history: Available online 20 June 2013
متن کاملIndependent Component Analysis
Abstract: Given a set of M signal mixtures (x1, x2, . . . , xM ) (e.g. microphone outputs), each of which is a different mixture of a set of M statistically independent source signals (s1, s2, . . . , sM ) (e.g. voices), independent component analysis (ICA) recovers the source signals (voices) from the signal mixtures. ICA is based on the assumptions that source signals are statistically indepe...
متن کامل